Appendices

Glossary of command terms

Command terms for Mathematics: applications and interpretation

Students should be familiar with the following key terms and phrases used in examination questions, which are to be understood as described below. Although these terms will be used frequently in examination questions, other terms may be used to direct students to present an argument in a specific way.

Command term	Definition
Calculate	Obtain a numerical answer showing the relevant stages in the working.
Comment	Give a judgment based on a given statement or result of a calculation.
Compare	Give an account of the similarities between two (or more) items or situations, referring to both (all) of them throughout.
Compare and contrast	Give an account of similarities and differences between two (or more) items or situations, referring to both (all) of them throughout.
Construct	Display information in a diagrammatic or logical form.
Contrast	Give an account of the differences between two (or more) items or situations, referring to both (all) of them throughout.
Deduce	Reach a conclusion from the information given.
Demonstrate	Make clear by reasoning or evidence, illustrating with examples or practical application.
Describe	Give a detailed account.
Determine	Obtain the only possible answer.
Differentiate	Obtain the derivative of a function.
Distinguish	Make clear the differences between two or more concepts or items.

Draw	Represent by means of a labelled, accurate diagram or graph, using a pencil. A ruler (straight edge) should be used for straight lines. Diagrams should be drawn to scale. Graphs should have points correctly plotted (if appropriate) and joined in a straight line or smooth curve.
Estimate	Obtain an approximate value.
Explain	Give a detailed account including reasons or causes.
Find	Obtain an answer showing relevant stages in the working.
Hence	Use the preceding work to obtain the required result.
Hence or otherwise	It is suggested that the preceding work is used, but other methods could also receive credit.
Identify	Provide an answer from a number of possibilities.
Integrate	Obtain the integral of a function.
Interpret	Use knowledge and understanding to recognize trends and draw conclusions from given information.
systematic examination, in order to establish	
facts and reach new conclusions.	

Justify	Give valid reasons or evidence to support an answer or conclusion.
Label	Add labels to a diagram.
List	Give a sequence of brief answers with no explanation.
Plot	Mark the position of points on a diagram.
Predict	Give an expected result.
Prove	Use a sequence of logical steps to obtain the required result in a formal way.
Show	Give the steps in a calculation or derivation.
Show that	Obtain the required result (possibly using information given) without the formality of proof. "Show that" questions do not generally require the use of a calculator.
Sketch	Represent by means of a diagram or graph (labelled as appropriate). The sketch should give a general idea of the required shape or relationship, and should include relevant features.
Solve	Obtain the answer(s) using algebraic and/or numerical and/or graphical methods.
State	Give a specific name, value or other brief answer without explanation or calculation.
Suggest	Propose a solution, hypothesis or other possible answer.

Verify	Provide evidence that validates the result.
Write down	Obtain the answer(s), usually by extracting information. Little or no calculation is required. Working does not need to be shown.

Notation list

There are various systems of notation in use, and the IB has chosen to adopt a system of notation based on the recommendations of the International Organization for Standardization (ISO). This notation is used in the examination papers for this course without explanation. If forms of notation other than those listed in this guide are used on a particular examination paper, they are defined within the question in which they appear.

Because students are required to recognize, though not necessarily use, IB notation in examinations, it is recommended that teachers introduce students to this notation at the earliest opportunity. Students are not allowed access to information about this notation in the examinations.

Students must always use correct mathematical notation, not calculator notation.

SL and HL

	the set of positive integers and zero,
	the set of integers,
	the set of positive integers,
	the set of rational numbers
	the set of positive rational numbers,
	the set of real numbers
	the set of positive real numbers,
	the number of elements in the finite set
	the set of all such that
	is an element of
	is not an element of
	the empty (null) set
	the universal set
	union
	the complement of the set
	the the power, square root of (if then)

	to the power of , reciprocal of
	the modulus or absolute value of , that is
	is approximately equal to
	is greater than
	is greater than or equal to
	is less than
	is less than or equal to
	is not greater than
	is not less than
	implies
	the term of a sequence or series
	the common difference of an arithmetic sequence
	the common ratio of a geometric sequence
	the sum of the first terms of a sequence,
	the image of under the function
	the inverse function of the function
	the derivative of with respect to
	the derivative of with respect to

	the indefinite integral of with respect to
	the definite integral of with respect to between the limits and
	the exponential function of
	the logarithm to the base of
	the natural logarithm of,
sin, cos, tan	the circular functions
	the point in the plane with Cartesian coordinates and
	the line segment with end points and
	the length of
	the line containing points and
	the angle at
	the angle between and
	the triangle whose vertices are, and
	probability of event
	probability of the event "not "
	probability of the event given
...	observations
...	frequencies with which the observations occur
	the expected value of the random variable

	population mean
	population variance
	population standard deviation
	the sample mean of a set of observations
	the probability that the random variable takes the value
	binomial distribution with parameters and
	normal distribution with mean and variance
	the random variable has a binomial distribution with parameters and
	the random variable has a normal distribution with mean and variance
	Pearson's product-moment correlation coefficient
	Spearman's rank correlation coefficient
	number of degrees of freedom
	chi-squared distribution
	the chi-squared test statistic
	the null hypothesis
	the alternative hypothesis

HL only

	the set of complex numbers,
	where
	a complex number
	the complex conjugate of
	the modulus of
	the argument of
	the real part of
	the imaginary part of
	is implied by
	implies and is implied by
	the closed interval
	the open interval
	the sum to infinity of a sequence, ...
	the composite function of and form of a complex number
	has anction under which each element of set

	the limit of as tends to
	the second derivative of with respect to
	the second derivative of with respect to
	the first derivative of with respect to time (t t

	an initial state matrix
	a transition matrix
	the adjacency matrix of a graph G
	a diagonal matrix of eigenvalues of eigenvectors
	sample variance
	standard deviation of the sample
	unbiased estimate of the population variance of the random variable
	a complete graph with vertices distribution with mean
	the sum of square residuals
	the random variable has a Poisson distribution
	with mean

